Схема Бестрансформаторного Блока Питания на 3 Вольта Диодный мост

Маломощный блок питания

Пропуская через себя импульс тока, варистор нагревается, и, если перегрузка слишком большая, может сгореть (защитив собой остальную схему). Поэтому варисторы выпускаются на разную мощность (точнее, энергию). При этом более «мощные» варисторы имеют бОльшие размеры. (Еще немного про варисторы см. Сетевой фильтр из удлинителя)

Понятно, что без сетевого фильтра можно и обойтись, но не нужно быть уж настолько оптимистом…

Очень важно, чтобы трансформатор был рассчитан на частоту 50 Гц. ВЧ и импульсные трансформаторы при включении в сеть сразу выпускают струйку вонючего дыма. Пробки при этом выбивает не всегда.

Рис.2. Однополупериодное и двухполупериодное выпрямление.

Если трансформатор однообмоточный, можно еще предложить двухполупериодный выпрямитель с виртуальной средней точкой. Но все же лучше сделать однополупериодный выпрямитель, но с реальной средней точкой, а не с виртуальной. Это мне мой более чем 25-летний опыт подсказывает. Есть в виртуальной точке что-то от резиновой женщины…

Напряжение на вторичной обмотке зависит от того, будет ли использоваться стабилизатор, или нет. В любом случае с напряжением не так все просто.

То напряжение, которое показывает вольтметр переменного тока, называется действующим значением и в 1,4142… (это корень из двух) раза меньше, чем максимальное (на рисунке слева действующее показано красной линией).

  • Снижается напряжение на вторичной обмотке (для маломощных трансформаторов это снижение может быть значительным).
  • Падает напряжение на выпрямительных диодах (от 0,5 до 2 вольт).
  • Конденсатор фильтра разряжается током нагрузки, и среднее напряжение на нем уменьшается (см. рис.3).

Поэтому, если используется нестабилизированный блок питания, нужно быть готовым к тому, что напряжение точь-в-точь такое, какое нужно (+-15В) получить не удастся. Оно будет где-то от 12 до 15 вольт. Лишь бы не больше — большинство микросхем выдерживают максимум 16,5 В.

Фильтр представляет собой конденсатор большой емкости. Он заряжается, когда напряжение, поступающее от выпрямителя (черная линия на рис.3) максимально, а потом медленно разряжается, подпитывая нагрузку (напряжение конденсатора — синяя линия):

Изменение напряжения называется пульсацией. В однополупериодном выпрямителе пульсации больше — дольше время разряда. Чем больше емкость фильтра — тем пульсации меньше, так как за это же время конденсатор разряжается на меньшую величину.

Интересно, что ток через диоды протекает только в момент заряда конденсаторов фильтра. При этом ток довольно большой — он идет и на питание нагрузки, и должен обеспечить нужный заряд (рис.4).

Кстати, и обратное напряжение на диоде (когда он закрыт и не пропускает ток) довольно большое — там суммируется с одной стороны входное напряжение, а с другой — выходное (не вычитаются, а именно суммируются). Поэтому не удивляйтесь, когда для выпрямителя на 15 вольт и 0,1 ампер используется диод, рассчитанный на 50 вольт и 1 ампер.

Маломощный блок питания

Маломощный блок питания - AudioKiller s site
В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.
Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Простой блок питания: для начинающих, сборка своими руками То напряжение, которое показывает вольтметр переменного тока, называется действующим значением и в 1,4142 это корень из двух раза меньше, чем максимальное на рисунке слева действующее показано красной линией. Спрашивайте, я на связи!

Как сделать блок питания, выбор схемы. — Радиомастер инфо

  • 153 то есть 15_3, это значит: 15 000 пФ = 15 * 10^3 пФ = 15 нФ
  • 224 то есть 22_4, это значит: 22 0 000 пФ = 22 * 10^4 пФ = 220 нФ = 0,22 мкФ
  • 155 то есть 15_5, это значит: 15 00 000 пФ = 15 * 10^5 пФ = 1,5 мкФ

Схема Бестрансформаторного Блока Питания на 3 Вольта

Преобразователь электрической энергии — электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями параметров и/или показателей качества.

Многие начинающие радиолюбители затрудняются определить тип блока питания, а ведь это не так уж и сложно. Основные способы преобразования напряжения заключаются в использовании одного из двух вариантов схемотехники:

Схема Бестрансформаторного Блока Питания на 3 Вольта Диодный мост

В свою очередь трансформаторные различаются по типу схемы:

Импульсные схемы блоков питания позволяют увеличить общий КПД конечного изделия, за счет избегания статических потерь на линейных стабилизаторах и прочих элементах.

Если возникает необходимость питания от бытовой электросети 220 В, простейшие приборы можно включить от блоков питания использующих балластные элементы для понижения напряжения. Широко известным примером такого источника питания является схема с балластным конденсатором.

Однако существует ряд драйверов со встроенным ШИМ-контроллером и силовым ключом для построения бестрансформаторного импульсного понижающего преобразователя, такие очень часто встречаются в светодиодных лампочках и другой технике.

В случае питания от источника постоянного тока, например, аккумуляторов или других гальванических элементов питания, используют:

  • Линейный стабилизатор напряжения (интегральный стабилизатор типа КРЕН или L78xx с, или без проходного транзистора, параметрического стабилизатора из стабилитрона и транзистора)
  • Импульсного преобразователя (понижающего – BUCK, повышающего – BOOST, или понижающе-повышающего – BUCK-BOOST)

Преимущество бестрансформаторных блоков питания и преобразователей заключаются в следующем:

  • Отсутствие гальванический развязки, при неисправностях ключей приводит к появлению напряжения первичного источника питания. Это критично особенно если в его роли выступает сеть 220 В;
  • Опасность поражения электрическим током, как следствие гальванической связи;
  • Большие габариты дросселя на преобразователях высокой мощности ставят под сомнение целесообразность использования этой топологии блоков питания. При сопоставимых массогабаритных показателях можно использовать уже трансформаторный, гальванически развязанный преобразователь.

Основные разновидности импульсных преобразователей напряжения

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Бестрансформаторные блоки питания_1 — Блоки питания (бестрансформаторные) — Источники питания — Каталог статей Дело в том, что он встроен в микросхему, кроме него там находится ШИМ-контроллер, цепи обратной связи для стабилизации выходного напряжения и другое. Спрашивайте, я на связи!

Всё о простейших бестрансформаторных импульсных преобразователях напряжения

Как сделать блок питания, выбор схемы.

Заставка v

Как известно, блок питания едва ли не самое распространенное электронное устройство. Простой блок питания сделать под силу даже начинающим. Но какую схему выбрать? Их столько, что многие теряются. В данной статье коротко рассказано об основных четырех типах схем и даны рекомендации их использования.

Перед тем, ка вы решили изготовить или подобрать готовый блок питания необходимо ответить на следующие вопросы:

  1. Какое напряжение должен выдавать блок питания? Это можно определить по характеристикам того устройства, которое будет подключаться к блоку питания.
  2. Какой ток должен обеспечивать блок питания? Это так же указано на устройстве, которое будет подключено. Если указана потребляемая мощность, то ток можно определить, разделив мощность на напряжение.

Учитывая сказанное, перейдем к рассмотрению основных типов схем.

Применяется при небольших токах, десятки миллиампер, редко сотни миллиампер. На практике используется для зарядки аккумуляторов небольших фонарей, питания светодиодов и т.д. Схема такого блока питания:

Величина емкости С1 при активной нагрузке определяется по формуле:

Если нагрузка не всегда подключена, или ее ток меняется, то схема должна содержать стабилитрон, который не позволит напряжению на конденсаторе С2 и нагрузке превысить допустимое значение:

Величина емкости С1 рассчитывается с учетом максимального тока стабилитрона и тока нагрузки.

В этой формуле: 3,5 — коэффициент, Iстmin — минимальный ток стабилитрона, Iнmax — ток нагрузки максимальный, Ucmin — напряжение сети минимальное, Uвых — напряжение выхода блока питания.

Тип емкости С1 К73-17 или подобные, рабочее напряжение не ниже 400 В. Можно С1 зашунтировать резистором несколько сотен кОм, для разряда конденсатора в выключенном состоянии.

Подробнее о расчетах таких схем рассказано в журнале Радио №5 за 1997 год (стр. 48-50).

Понятно, что при отключенной нагрузке блок питания будет потреблять мощность на работу стабилитрона, соизмеримую с мощностью нагрузки. КПД поэтому низкий. Это одна из причин использования таких схем только для малых токов. Работая с такими блоками питания важно помнить, что их детали имеют гальваническую связь с сетью и опасность поражения током велика.

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Недостатки Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке в самом простом варианте используется только R1 и R2. Спрашивайте, я на связи!

Стабилизатор

Понравилась статья? Поделиться с друзьями:
✨Мир света
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: