Бестрансформаторный Источник Питания с Гасящим Конденсатором Как повысить безопасность

Зачем нужны бестрансформаторные блоки питания

Компактные бестрансформаторные блоки питания часто используются для питания от электросети небольших маломощных устройств. В этой статье мы рассмотрим несколько аппаратных аспектов, а во второй части покажем, как смоделировать такую ​​схему.

Если ток, потребляемый нагрузкой, составляет порядка нескольких десятков миллиампер, можно легко преобразовать входное напряжение переменного тока в напряжение постоянного тока без необходимости использования громоздких и дорогих трансформаторов.

Бестрансформаторные блоки питания не только имеют меньший вес и габариты, но и дешевле. В зависимости от типа схемы, бестрансформаторные блоки питания делятся на две категории: емкостные и резистивные.

Ниже мы разберем характеристики каждого типа этих схем. В статье также даются практические советы о том, как выбрать мощность соответствующих электронных компонентов для этой системы и какие меры следует предпринять для повышения безопасности эксплуатации такого блока питания.

Формула-1

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Простейший бестрансформаторный источник питания для светодиодной матрицы 53 показана схема бестрансформаторного источника питания с использованием аналога мощного стабилитрона, на основе которой можно построить блок питания с регулируемым выходным напряжением. Спрашивайте, я на связи!

Бестрансформаторные блоки питания: самостоятельная сборка схем

  • Предохранитель для защиты от перегрузки по току
  • Варистор для защиты от переходных процессов
  • Резистор R2 ( R3 ) параллельно включенный с C1 ( C3 ) обеспечивают улучшения электромагнитной устойчивости.
  • Разделение R1 на два резистора R1 и R2 для лучшей защиты от переходных процессов напряжения и предотвращения возникновения электрической дуги (только для резистивной цепи).

Бестрансформаторный емкостный блок питания

Схема бестрансформаторного емкостного блока питания показана на рисунке 1. Значения, указанные для компонентов, относятся к конкретной схеме блока питания, а формулы, позволяющие рассчитать эти значения, приведены ниже. L и N указывают, соответственно, «фазу» и «ноль» сетевого напряжения переменного тока, в то время как VOUT — выходное напряжение, а IOUT — выходной ток.

Пусковой ток (потенциально способный повредить компоненты) ограничивается резистором R1 и реактивным сопротивлением C1. Элемент D1 является диодом Зенера, который обеспечивает стабилизированное опорное напряжение, в то время как D2 представляет собой кремниевый диод с задачей выпрямления напряжения переменного тока.

Напряжение на нагрузке остается постоянным, пока выходной ток IOUT меньше или равен входному току IIN, значение которого можно рассчитать как:

Формула-1

Где VZ — напряжение стабилитрона, VRMS — это среднеквадратичное значение входного переменного напряжения, а f — его частота. Минимальное значение IIN должно соответствовать потребной мощности нагрузки, а его максимальное значение должно использоваться для выбора правильной номинальной мощности для каждого компонента. Выходное напряжение VOUT можно рассчитать как:

Где VD — напряжение прямого смещения на D2 (0,6–0,7v для обычного кремниевого диода). Что касается R1, рекомендуется выбирать элемент, по крайней мере, с удвоенной мощностью сравнительно с теоретическим значением PR1, определяемым по формуле:

Конденсатор C1, который дает название этому типу схемы, следует выбирать с напряжением, по крайней мере, вдвое превышающим напряжение сети переменного тока (например, 250v в США). Диод D1 должен иметь мощность, как минимум, в два раза превышающую теоретическое значение, определяемое следующей формулой:

То же самое относится к мощности диода D2, где значение постоянного напряжения 0,7v теперь может использоваться вместо VZ. Для C2 обычно применяется электролитический конденсатор с напряжением в два раза выше VZ.

Бестрансформаторный Источник Питания с Гасящим Конденсатором

Бестрансформаторный Источник Питания с Гасящим Конденсатором Как повысить безопасность

Решением данной проблемы при выполнении определенных условий может служить бестрансформаторный блок питания с гасящим конденсатором. Эти условия-.

— полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства (например, к приемнику магнитофон для записи программы);- диэлектрический (непроводящий) корпус и такие же ручки управления у самого блока питания и подключаемого к нему устройства.

Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом VD1 включен резистор R2, а для разрядки конденсатора после отключения — параллельно ему резистор R1.

Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой емкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:

где f— частота сети (50 Гц); С—емкость конденсатора С1,Ф. Тогда выходной ток источника можно приблизительно определить так:

От начала положительного полупериода тока через конденсатор С1 до момента ti стабилитрон VD3 и диод,\Ю2 открыты, а стабилитрон VD4 и диод V01 закрыты. В интервале времени ti. t3 стабилитрон VD3 и диод VD2 остаются открытыми, а через открывшийся стабилитрон VD4 проходит импульс тока стабилизации. Напряжение на выходе ивых и на стабилитроне VD4 равно его напряжению стабилизации UCT.

Импульсный ток стабилизации, являющийся для диодно-стабилит-ронного выпрямителя сквозным, минует нагрузку RH, которая подключена к выходу моста. В момент t2 ток стабилизации достигает максимума, а в момент 1з равен нулю. До окончания положительного полупериода остаются открытыми стабилитрон VD3 и диод VD2.

Работа диодно-стабилитроиного выпрямителя без балластного конденсатора, ограничивающего сквозной ток, невозможна. В функциональном отношении они неразделимы и образуют единое целое — кон-денсаторно-стабилитронный выпрямитель.

Разброс значений UCT однотипных стабилитронов составляет примерно 10%, что приводит к возникновению дополнительных пульсаций выходного напряжения с частотой питающей сети. Амплитуда напряжения пульсации пропорциональна разнице значений UCT стабилитронов VD3 и VD4.

При использовании мощных стабилитронов Д815А. Д817Г их можно установить на общий радиатор, если в обозначении их типа присутствуют буквы «ПП» (стабилитроны Д815АПП. Д817ГПП имеют обратную полярность выводов). В противном случае диоды и стабилитроны необходимо поменять местами.

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Бестрансформаторные источники питания, преобразователи напряжения без трансформатора. Расчет. Рассчитать онлайн, online Точная оценка действующего напряжения на конденсаторе с учетом сложного характера нагрузки представляет некоторую сложность, но грубо будем считать, то. Спрашивайте, я на связи!

Бестрансформаторные блоки питания_1 — Блоки питания (бестрансформаторные) — Источники питания — Каталог статей

Простейший бестрансформаторный блок питания для светодиодной матрицы

Простейший бестрансформаторный источник питания для светодиодной матрицы

У конденсатора 220 мкФ 25 В нужно разогнуть контакты и припаять их к рамке из диодов. На его корпусе имеется продольная полоса. Противоположный к ней электрод паяется к контактам диодов соединенных полоска к полоске. Примыкающий до метки контакт скрепляется соответственно с диодами со стороны противоположной до полос.

Далее к имеющейся схеме припаивается одним усиком керамический конденсатор 1 мкФ (105J). Для этого его следует расположить по левую руку и повернуть маркировкой к себе.

Между усиками керамического конденсатора впаивается резистор 1 МОм. В нем нет полярности, поэтому его можно расположить любой стороной. Этот резистор нужен для разряда конденсатора, когда питание отключено от всей цепи.

Чтобы он светил, нужно соблюсти полярность. Минус присоединяется к электродам со стороны полоски на конденсаторе 220 мкФ 25 В. Плюс паяется напротив.

Чтобы запитать схему от сети 220В нужно присоединить двухжильный кабель с вилкой. Одна жила паяется к электроду керамического конденсатора и резистора, а вторая к незадействованной противоположной части рамки из диодов.

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Расчет сетевого источника питания с гасящим конденсатором Вместо КП706Б VT3 возможно применение аналогичных отечественных полевых транзисторов или импортного IGBT на такой же ток и напряжение, причем желательно с минимальным сопротивлением канала. Спрашивайте, я на связи!

Как повысить безопасность

Понравилась статья? Поделиться с друзьями:
✨Мир света
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: