Что Такое Максимальное Прямое Напряжение Диода Коэффициент выпрямления

P-N-переход и диод.

Как упоминалось ранее электропроводность полупроводников сильно зависит от концентрации примесей. Полупроводники, электрофизические свойства которых зависят от примесей других химических элементов, называются примесными полупроводниками. Примеси бывают двух видов донорной и акцепторной.

Донорной называется примесь, атомы которой дают полупроводнику свободные электроны, а получаемая в этом случае электропроводность, связанная с движением свободных электронов, — электронной. Полупроводник с электронной проводимостью называется электронным полупроводником и условно обозначается латинской буквой n — первой буквой слова «негативный».

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Акцепторной называется примесь, атомы которой принимают электроны от атомов основного полупроводника. Получаемая при этом электропроводность, связанная с перемещением положительных зарядов — дырок, называется дырочной. Полупроводник с дырочной электропроводностью называется дырочным полупроводником и условно обозначается латинской буквой p — первой буквой слова «позитивный».

Одним из важных свойств полупроводника является то, что при наличии дырок через него может проходить ток, даже если в нём нет свободных электронов. Это объясняется способностью дырок переходить с одного атома полупроводника на другой.

Перемещение дырок в полупроводнике

Перемещение «дырок» в полупроводнике

Какое освещение Вы предпочитаете
ВстроенноеЛюстра

Вводя в часть полупроводника донорную примесь, а в другую часть — акцепторную, можно получить в нём области с электронной и дырочной проводимостью. На границе областей электронной и дырочной проводимости образуется так называемый электронно-дырочный переход.

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Выпрямительные диоды: устройство, конструктивные особенности, характеристики Если температура слишком высокая, увеличивается количество энергоносителей в переходе, снижается сопротивление, растет объем противоположного тока. Спрашивайте, я на связи!

Принцип работы диода: устройство, характеристика, как пропускает ток при прямом и обратном включении

  • падение напряжения Uпр на диоде при некотором значении прямого тока;
  • обратный ток Iобр при некотором значении обратного напряжения;
  • среднее значение прямого тока Iпр.ср.;
  • импульсное обратное напряжение Uобр.и.;

P-N-переход

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Перемещение дырок в полупроводнике

Маркировка диодов

Маркировка полупроводниковых диодов, рассчитанных на сравнительно небольшие токи (до 10 А) состоит из шести буквенных и цифровых элементов:

  • первый элемент обозначает исходный материал: К или 2 – кремний; Г или 1 – германий; А или 3 – арсенид галлия.
  • второй буквенный элемент обозначает тип прибора: Д – диоды выпрямительные; А – сверхвысокочастотные диоды; В – варикапы; И – туннельные диоды; С – стабилитроны; Л – светодиоды.
  • третий, четвертый, пятый элементы – цифры, характеризующие некоторые электрические параметры прибора, в частности мощность рассеяния.
  • шестой элемент – буква (от А до Я), обозначающая последовательность разработки.

Полупроводниковые диоды, рассчитанные на токи от 10 А до 2000 А и более часто называют силовыми неуправляемыми вентилями и маркируют буквой В (вентиль), после которой проставляется число, указывающее значение прямого номинального тока. В качестве силовых, в основном используют кремниевые диоды, которые делятся на группы, классы и подклассы.

Интересно почитать: принцип действия и основные характеристики варисторов.

Допустимое напряжение принимается для обычных диодов равным половине напряжения загиба, а для лавинных диодов 0.7 Uзаг. Пример. Если напряжение загиба обычного вентиля составляет 850 В, то допустимое напряжение – 425В, т.е. класс вентиля – 4. По назначению диоды разделяются на следующие:

  • выпрямительные диоды (как разновидность выпрямительных – силовые), которые предназначены для выпрямления переменного тока низкой частоты (рис. 8.3, а). В качестве выпрямительных диодов используют плоскостные диоды, допускающие большие выпрямительные токи;
  • высокочастотные диоды, предназначенные для выпрямления переменного тока в широком диапазоне частот, а также для детектирования. В качестве высокочастотных диодов применяют диоды точечной конструкции;
  • импульсные диоды, которые применяют в схемах генерирования и усиления импульсов микросекундного и наносекундного диапазонов;
  • туннельные диоды (рис. 8.3, в), применяемые в качестве усилителей и генераторов высокочастотных колебаний;
  • светодиоды (рис. 8.3, е), которые используют в качестве световой индикации наличия тока и которые имеют разные цвета свечения;
  • стабилитроны (рис. 8.3, б), предназначенные для стабилизации уровня напряжения при изменениях значения протекающего через них тока;
  • варикапы (рис. 8.3, г) – полупроводниковые диоды, емкость которых можно изменять в широких пределах;
  • фотодиоды (рис. 8.3, д), которые являются источниками тока, преобразующими световую энергию в электрическую, причем сила тока пропорциональна освещенности фотодиода.

Первый элемент (цифра или буква) обозначает исходный полупроводниковый материал, второй (буква) — подкласс приборов, третий (цифра) — основные функциональные возможности прибора, четвертый — число, обозначающее порядковый номер разработки, пятый элемент — буква, условно определяющая классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

Что Такое Максимальное Прямое Напряжение Диода Коэффициент выпрямления

Выпрямительные диоды малой, средней, большой мощности. Лавинные диоды и столбы
В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.
Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
P-N-переход и диод. | HomeElectronics При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Спрашивайте, я на связи!

Выпрямительный диод: принцип действия и основные параметры

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Выпрямительные диоды

Страница 1. Смотреть страницу 2 3 4 5 6 7

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Что Такое Максимальное Прямое Напряжение Диода Коэффициент выпрямления

Понравилась статья? Поделиться с друзьями:
✨Мир света
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector