Какой из Диодов Работает При Прямом Напряжении Общие сведения

Какой из Диодов Работает При Прямом Напряжении

Ознакомиться с основными фотометрическими величинами; ознакомиться с принципом работы фотометра; проверить выполнение закона Ламберта для источника света

Полупроводниковые диоды и стабилитроны

Выпрямительные диоды и стабилитроны представляют собой полупроводниковые приборы с одним электронно-дырочным переходом (p–n-переходом).

Вольт-амперная характеристика (ВАХ) идеализированного p–n-перехода описывается известным уравнением

где \(I_0\) – обратный ток p–n-перехода; \(q\) – заряд электрона \(q=1,6\cdot 10^\ Кл\); \(k\) – постоянная Больцмана \(k = 1,38⋅10^ Дж\cdot град\); \(T\) – температура в градусах Кельвина.

Графическое изображение этой зависимости представлено на рис. 1.1.

Вольт-амперная характеристика имеет явно выраженную нелинейность, что предопределяет зависимость сопротивления диода от положения рабочей точки.

Различают сопротивление статическое \(R_\) и динамическое \(R_\). Статическое сопротивление \(R_\), например в точке А (рис. 1.1), определяется как отношение напряжения \(U_A\) и тока \(I_A\), соответствующих этой точке: \(R_ = \frac = tg\)

Динамическое сопротивление определяется как отношение приращений напряжения и тока (рис. 1.1): \(R_ = \frac\);

При малых значениях отклонений \(∆U\) и \(ΔI\) можно пренебречь нелинейностью участка АВ характеристики и считать его гипотенузой прямоугольного треугольника АВС, тогда \(R_ = tgβ\).

Если продолжить линейный участок прямой ветви вольт-амперной характеристики до пересечения с осью абсцисс, то получим точку \(U_0\) – напряжение отсечки, которое отделяет начальный пологий участок характеристики, где динамическое сопротивление \(R_\) сравнительно велико от круто изменяющегося участка, где \(R_\) мало.

При протекании через диод прямого тока полупроводниковая структура нагревается, и если температура превысит при этом предельно допустимое значение, то произойдет разрушение кристаллической решетки полупроводника и диод выйдет из строя. Поэтому величина прямого тока диода ограничивается предельно допустимым значением \(I_\) при заданных условиях охлаждения.

Необратимый пробой для полупроводникового прибора является нерабочим и недопустимым режимом.

Поэтому в паспортных данных диода всегда указывается предельно допустимое обратное напряжение \(U_\) (напряжение лавинообразования), соответствующее началу пробоя p–n-перехода. Обратное номинальное значение напряжения составляет обычно \(0,5\ U_\) и определяет класс прибора по напряжению. Так, класс 1 соответствует 100 В обратного напряжения, класс 2 – 200 В и т. д.

Стабилитроны находят широкое применение в качестве источников опорного напряжения, в стабилизаторах напряжения, в качестве ограничителей напряжения и др.

Какой из Диодов Работает При Прямом Напряжении Общие сведения

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Характеристики полупроводниковых диодов Анализ вольт-амперной характеристики полупроводникового диода показывает, что он является нелинейным элементом, его сопротивление меняется в зависимости от величины и знака приложенного напряжения. Спрашивайте, я на связи!

Выпрямительные диоды: для чего применяются, принцип действия, ВАХ

Эксперимент

Оборудование, используемое в лабораторной работе: вритуальный лабораторный стенд, блок No 1 (схемы А1–А4); комбинированный прибор «Сура», мультиметры; соединительные провода.

Изучить схемы включения полупроводниковых приборов А1–А4 (рис. 1.3–1.6) для снятия вольт-амперных характеристик ВАХ диода и стабилитрона.

Ознакомиться с устройством лабораторного стенда, найти на стенде блок №1 и схемы А1–А4.

Порядок выполнения задания №1 «Исследование полупроводникового диода»

Экспериментальное получение прямой ветви ВАХ диода \(I_ = f(U_)\) с использованием схемы A1, представленной на рис. 1.3.
Экспериментальное получение обратной ветви ВАХ диода \(I_ = f(U_)\) с использованием схемы А2, представленной на рис. 1.4.
По ВАХ или таблицам определить:
  1. Статическое сопротивление диода в прямом включении \(R_=\frac>>\) при U пр = 0,4 В и U пр = 0,1 В.
  2. Динамическое сопротивление диода в прямом включении \(R_=\frac>>\) на начальном участке ВАХ ( U пр =0 В и U пр = 0,1 В ) и на участке насыщения ВАХ ( U пр = 0,4 В и U пр = 0,45 В ).
  3. Статическое сопротивление диода в обратном включении \(R_=\frac>>\) при U обр = 5 В и U обр = 25 В.
  4. Динамическое сопротивление диода в обратном включении \(R_=\frac>>\) на начальном участке ВАХ ( U пр =0 В и U пр = 5 В ) и на участке насыщения ВАХ ( U пр = 20 В и U пр = 25 В ).

Порядок выполнения задания No2 «Исследование полупроводникового стабилитрона»

Экспериментальное получение прямой ветви ВАХ стабилитрона \(I_ = f(U_)\) с использованием схемы A3, представленной на рис. 1.5.
Экспериментальное получение обратной ветви ВАХ стабилитрона \(I_ = f(U_)\) с использованием схемы А4, представленной на рис. 1.6.

Графическое отображение нелинейного ВАХ

Характеристики полупроводниковых диодов

Вольт-амперная характеристика полупроводникового диода аналитически выражается следующей формулой:

где I — ток, протекающий через диод; q — заряд электрона; k — постоянная Больцмана; I 0 — ток насыщения (обратный ток); T — абсолютная температура.

Рис. 76. Вольт-амперная характеристика полупроводникового диода.

При комнатной температуре q/kT примерно равно 40 1/в, и формула (88) примет вид

Из формулы (89) следует, что при положительном (прямом) напряжении, приложенном к n—р-переходу, начиная с напряжения порядка 0,04—0,05 в, экспоненциальный член еои много больше единицы, и ток через n — р-переход с увеличением напряжения резко возрастет.

Наоборот, при отрицательных (обратных) напряжениях, экспоненциальный член е — 40U =1/e 40U будет много меньше единицы, им можно пренебречь и считать, что ток, проходящий через полупроводниковый диод , т. е. обратный ток, равен току, проходящему через n — р-переход при отсутствии внешнего напряжения.

Если обратное напряжение превысит допустимое максимальное напряжение U обр.макс , то наступит перегрев и разрушение диода. Чем больше протяженность отрицательной ветви вольт-амперной характеристики, тем большей способностью выдерживать без пробоя обратное напряжение обладает диод.

Сопротивление n — р-перехода переменному току в данной точке вольт-амперной характеристики определяется ее наклоном и может быть определено дифференцированием выражения (88):

где I и I 0 — в миллиамперах, R — сопротивление полупроводникового диода — в омах.

Формула (90) и характеристика сопротивления R, представленная пунктиром на рис. 76 , показывают, что с увеличением тока сопротивление перехода падает и составляет величину порядка единиц или даже десятых долей ома. При обратном напряжении, когда I → I 0 , сопротивление n — р-перехода имеет величину порядка десятков и сотен тысяч ом.

Анализ вольт-амперной характеристики полупроводникового диода показывает, что он является нелинейным элементом, его сопротивление меняется в зависимости от величины и знака приложенного напряжения. Эти свойства полупроводникового диода позволяют его использовать для выпрямления переменного тока, преобразования частоты, ограничения амплитуд и т. д.

Для оценки электрических свойств полупроводниковых точечных диодов пользуются следующими параметрами:

  1. Прямой ток — ток, протекающий через диод, когда к нему приложено постоянное прямое напряжение в один вольт.
  2. Обратный ток — ток, протекающий через диод, когда к нему приложено наибольшее постоянное допустимое обратное напряжение.
  3. Обратное пробивное напряжение — напряжение, при котором диод выходит из строя.
  4. Допустимая амплитуда обратного напряжения — наибольшая амплитуда обратного напряжения, которая может быть приложена к прибору в обратном направлении в течение продолжительного времени, не вызывая пробоя.
  5. Среднее значение выпрямленного тока — постоянная составляющая выпрямленного тока диода, которая может протекать через диод долгое время, не вызывая его перегрева.

включение светодиода

Исследование вольт-амперных характеристик выпрямительных диодов и стабилитронов
Различают сопротивление статическое \(R_\) и динамическое \(R_\). Статическое сопротивление \(R_\), например в точке А (рис. 1.1), определяется как отношение напряжения \(U_A\) и тока \(I_A\), соответствующих этой точке: \(R_ = \frac = tg\)
Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Какой из Диодов Работает При Прямом Напряжении Вольт-амперная характеристика имеет явно выраженную нелинейность, что предопределяет зависимость сопротивления диода от положения рабочей точки. Спрашивайте, я на связи!

Диод с малым падением напряжения при прямом включении

  1. Подводимое переменное напряжение — максимальное действующее значение переменного синусоидального напряжения в вольтах, которое можно подавать на вход диода в течение продолжительного времени без пробоя.
  2. Прямое падение напряжения — среднее значение напряжения на диоде при максимально допустимом выпрямленном токе. Оно характеризует внутреннее сопротивление прибора при прохождении через него прямого тока и обычно составляет величину порядка десятых долей вольта.
  3. Выпрямленный ток — постоянная составляющая тока диода, которая при длительном протекании через диод не вызывает его перегрева, измеряется в миллиамперах или в амперах.
  4. Обратный ток — среднее значение обратного тока диода, когда к нему приложено допустимое обратное переменное напряжение. Он характеризует внутреннее сопротивление диода в обратном направлении.

Понравилась статья? Поделиться с друзьями:
✨Мир света
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: