Косинус в квадрате и синус в квадрате
Разбираемся с простыми понятиями: синус и косинус и вычисление косинуса в квадрате и синуса в квадрате.
Синус и косинус изучаются в тригонометрии (науке о треугольниках с прямым углом).
Поэтому для начала вспомним основные понятия прямоугольного треугольника:
Гипотенуза — сторона, которая всегда лежит напротив прямого угла (угла в 90 градусов). Гипотенуза — это самая длинная сторона треугольника с прямым углом.
Оставшиеся две стороны в прямоугольном треугольнике называются катетами.
Также следует помнить, что три угла в треугольнике всегда имеют сумму в 180°.
Теперь переходим к косинусу и синусу угла альфа (∠α) (так можно назвать любой непрямой угол в треугольнике или использовать в качестве обозначение икс — «x», что не меняет сути).
Синус угла альфа (sin ∠α) — это отношение противолежащего катета (сторона, лежащая напротив соответствующего угла) к гипотенузе. Если смотреть по рисунку, то sin ∠ABC = AC / BC
Косинус угла альфа (cos ∠α) — отношение прилежащего к углу катета к гипотенузе. Если снова смотреть по рисунку выше, то cos ∠ABC = AB / BC
И просто для напоминания: косинус и синус никогда не будут больше единицы, так как любой катит короче гипотенузы (а гипотенуза — это самая длинная сторона любого треугольника, ведь самая длинная сторона расположена напротив самого большого угла в треугольнике).

1 Тригонометрические уравнения — ЗФТШ, МФТИ
Косинус в квадрате, синус в квадрате
Теперь переходим к основным тригонометрическим формулам: вычисление косинуса в квадрате и синуса в квадрате.
Для их вычисления следует запомнить основное тригонометрическое тождество:
sin 2 α + cos 2 α = 1 (синус квадрат плюс косинус квадрат одного угла всегда равняются единице).
Из тригонометрического тождества делаем выводы о синусе:
или более сложный вариант формулы: синус квадрат альфа равен единице минус косинус двойного угла альфа и всё это делить на два.
Из тригонометрического тождества делаем выводы о косинусе:
или более сложный вариант формулы: косинус квадрат альфа равен единице плюс косинус двойного угла альфа и также делим всё на два.
Эти две более сложные формулы синуса в квадрате и косинуса в квадрате называют еще «понижение степени для квадратов тригонометрических функций». Т.е. была вторая степень, понизили до первой и вычисления стали удобнее.
Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание
Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников
При правильном ответе Вы получите 8 баллов
Добавление комментариев доступно только зарегистрированным пользователям
Косинус 4х Плюс Косинус 2х Равно 0
Чтобы решить тригонометрическое уравнение надо путём тригонометрических преобразований свести его к простейшему тригонометрическому уравнению. Напомним формулы решений простейших тригонометрических уравнений.
Отметим, что последнюю формулу иногда удобнее расписать отдельно для чётных `(n=2k, k in Z)` и нечётных `(n=2k+1, k in Z)n`. А именно
Отметим несколько частных случаев простейших тригонометрических уравнений, в которых ответ можно записать более просто, чем по общим формулам.
Рассмотрим несколько типовых способов решения тригонометрических уравнений.
Используя формулу `sin2x=2sinxcosx`, преобразуем данное уравнение
Отметим, что в сериях решений 1) и 2) не было бы ошибкой использовать разные буквы (например, `n` и `m`), т. к. идёт перечисление решений.
Используя формулу приведения `sin2x=cos(pi/2-2x)`, преобразуем наше уравнение `cos(pi/2-2x)+cos(5x-pi/6)=0` или `2cos((3x+pi/3)/2)*cos((7x-(2pi)/3)/2)=0`.
II. Сведение уравнения к алгебраическому от одного переменного
Отметим, что в случае двух уравнений `sinx=+-(sqrt3)/2` мы записали не объединение стандартных формул `(-1)^n(+-pi/3)+pin,ninZ`, а более простую, которая получается, если изобразить решения этих уравнений на тригонометрическом круге (рис. 1). (Две верхние точки – решения уравнения `sinx=(sqrt3)/2`, а две нижние – решения уравнения `sinx=-(sqrt3)/2`).
Это уравнение можно решить и пользуясь формулой `sin^2x+(1-cos2x)/2`. Тогда оно преобразуется к виду: `cos2x=0`, `2x=pi/2+pin,ninZ`, или
Геометрически множества точек (1) и (2) совпадают (рис. 2). Так что решения тригонометрических уравнений могут быть записаны в разной форме.
III. Однородные уравнения
(хотя формально эти уравнения можно отнестик предыдущему типу)
Это однородное уравнение второго порядка. Так как `cosx!=0` (иначе из нашего уравнения следовало бы, что `sinx=0` что противоречит основному тригонометрическому тождеству `sin^2x+cos^2x=1`), то разделим наше уравнение на `cos^2x`. Получим уравнение `5″tg»^2x-4″tg»x-1=0`. Откуда `»tg»x=1` или `»tg»x=-1/5`. Следовательно, `x=pi/4+pin,ninZ`, или `x=-«arctg»1/5+pin,ninZ`.
Откуда `»tg»x=1` или `»tg»x=-2/5`. И значит, `x=pi/4+pin,ninZ`, или `x=-«arctg»2/5+pin,ninZ`
Наконец рассмотрим уравнение, сводящееся к однородному третьего порядка.
Это однородное уравнение третьего порядка. Деля его на `cos^3x` (`cosx!=0` для решений нашего уравнения), получим уравнение относительно `»tg»x`
Делаем замену: `t=»tg»x`. Алгебраическое уравнение `t^3-t^2+12=0` имеет корень `t=-2` (находится подбором среди целых делителей числа `12`). Далее деля многочлен `t^3-t^2+12` на `(t+12)`, раскладываем левую часть алгебраического уравнения на множители

Функция y cos x, свойства и график косинуса с примерами
п.3. Примеры
Пример 2. Решите уравнение графически:
a) \(cosx=\frac\pi2-x\)
Один корень: \(x=\frac\pi2\)
б) \(cosx-x=1\)
\(cosx=x+1\)
Один корень: x = 0
в) \(cosx-x^2=1\)
\(cosx=x^2+1\)
Один корень: x = 0
г*) \(cosx-x^2+\frac=0\)
\(cosx=x^2-\frac\)
\(y=x^2-\frac\) – парабола ветками вверх, с осью симметрии \(x_0=0\) (ось OY) и вершиной \(\left(0; -\frac\right)\) (см. §29 справочника для 8 класса)
Два корня: \(x_=\pm\frac\pi2\)

Формулы приведения
Формулы понижения степени
sin 2 α = 1 — cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α — sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 — 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8
Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:
sin n α = C n 2 n 2 n + 1 2 n — 1 ∑ k = 0 n 2 — 1 ( — 1 ) n 2 — k · C k n · cos ( ( n — 2 k ) α ) cos n α = C n 2 n 2 n + 1 2 n — 1 ∑ k = 0 n 2 — 1 C k n · cos ( ( n — 2 k ) α )
sin n α = 1 2 n — 1 ∑ k = 0 n — 1 2 ( — 1 ) n — 1 2 — k · C k n · sin ( ( n — 2 k ) α ) cos n α = 1 2 n — 1 ∑ k = 0 n — 1 2 C k n · cos ( ( n — 2 k ) α )
