При Подключении к Источнику Постоянного Тока Принцип работы

Переходные процессы в RC- и RL- цепях

Переходными, в электрической цепи, принято называть процессы возникающие в результате различных воздействий (например: включений или отключений цепи от источника питания, обрывах или коротких замыканиях, импульсных возмущающих воздействий и так далее) и переводящих её из одного стационарного (установившегося) состояния в новое (другое) стационарное состояние.

Рассмотрим переходный процесс в RC-цепи (рисунок 1), в состав которой входят резистор R, конденсатор С, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

Если установить ключ К в положение ”1” (рисунок 1), то начнётся процесс заряда конденсатора С через резистор R (рисунок 2,a). Для образовавшейся цепи будет справедливо соотношение :

Так как на конденсаторе напряжение скачком изменяться не может, то в момент (t=0) подключения цепи к источнику питания всё напряжение источника окажется на резисторе R, то есть uR = U, uc = 0.

где t – любой момент времени, τ – постоянная времени заряда конденсатора в секундах:

Значения напряжения на резисторе и общего тока RC-цепи уменьшаются также по экспоненциальному закону:

Поэтому, принято считать, что процесс заряда конденсатора заканчивается, когда напряжение на нём достигает значений 90,95 или 99% величины напряжения источника питания U=E.

В подавляющем большинстве случаев, как на практике, так и в теоретических расчётах, время t в течение которого конденсатор считается полностью заряженным, принимают равным 3τ. Также это можно отнести ко всем электрическим цепям, где токи меняются по экспоненциальному закону.

Ток в начальный момент ( t=0) разряда конденсатора будет иметь максимальное значение:

Но по мере разряда конденсатора (превращения накопленной в его электрическом поле энергии в тепловую на резисторе R ) напряжение на нём будет уменьшаться и, как следствие, будут уменьшаться по экспоненциальному закону ток в цепи и напряжение на резисторе:

Через некоторое время, например t=3τ (см. приведенную выше табл.), на конденсаторе останется примерно 5% напряжения от начального значения, что условно можно считать окончанием переходного процесса и возвратом схемы в исходное состояние когда: uC = 0, uR = 0, i = 0.

Теперь рассмотрим переходной процесс в RL-цепи (рис.3), в состав которой входят резистор R, катушка индуктивности L, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

На рисунке 4,а показано что ток в цепи, особенно в начале подключения к источнику, нарастает с наибольшей скоростью, но уже при t= τ его рост значительно замедляется, а при t=3τ практически прекращается и можно считать что его величина достигла установившегося значения i=U/R. При этом, с ростом тока, ЭДС самоиндукции уменьшается до нуля, переходной процесс заканчивается.

При Подключении к Источнику Постоянного Тока Принцип работы

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Светодиоды 12 вольт: схема, мощные, без резистора, сколько можно подключить В реальности она еще меньше, потому что здесь не учитывалось сопротивление самих щупов мультиметра, которое может быть более 1 Ома. Спрашивайте, я на связи!

Как подключить конденсатор в цепь постоянного тока

Подключение вольтметра

Вольтметр измеряет напряжение – разность потенциалов между двумя точками электрической цепи.

Так как напряжение получается между двумя точками, то и вольтметр подключается параллельно источнику питания или какому-нибудь элементу цепи. Как бы это странно или смешно ни звучало, но подключить вольтметр в цепь последовательно нельзя, потому что напряжение нельзя измерить в одной точке — обязательно нужны две точки.

Как известно, постоянный ток не изменяет своего направления с течением времени, значит, напряжение и полярность источника постоянного тока тоже не изменяются.

Если вольтметр цифровой, или вы измеряете напряжение мультиметром, то при неправильном подключении возможен один из вариантов:

  1. Прибор покажет измеренное значение, но со знаком «минус» перед ним. Знак минус говорит о неверной полярности или о том, что на плюсовом выводе вольтметра (на щупе) напряжение отрицательно относительно выбранной точки измерения (второго щупа).
  2. Прибор сам определит полярность и покажет измеренное значение.
  3. На экране не будет никаких значений или будут гореть «нули».

Причём первый вариант самый распространённый для большинства цифровых мультиметров.

Переменный ток изменяет своё направление с течением времени, например, в отечественной электросети, оно изменяется с частотой 50 герц. Простым языком плюс и минус на разноимённых проводах меняются местами 100 раз в секунду.

Поэтому при измерении переменного тока просто невозможно соблюдать полярность и выводы вольтметра подключаются к цепи произвольно.

ВАЖНО! При выборе вольтметра (и амперметра) учитывайте для измерения какого тока он предназначен, для переменного или постоянного. Есть приборы, которые могут измерять и постоянный, и переменный ток, а есть измеряющие только постоянный ток. На стрелочных приборах род измеряемой величины обозначается соответствующим знаком на шкале (см. таблицу ниже).

Особенности

Чтобы разобраться в особенностях подключения и работы вольтметра, нам нужно рассмотреть небольшую схему.

Стрелочный вольтметр состоит из двух основных частей:

  1. Измерительный механизм , в разных источниках его называют по-разному, например, измерительной головкой или гальванометром. В любом случае это устройство, состоящее из чувствительного элемента со стрелкой и шкалой. Стрелочные измерительные головки, как правило, универсальны и могут использоваться как для измерения тока, так и для измерения напряжения. В зависимости от принципа работы в устройстве измерительного механизма может быть рамка с катушкой и стрелкой, которая двигается в поле постоянного магнита (в магнитоэлектрических приборах) или катушка с подвижным сердечником, на котором закреплена стрелка (в электромагнитных приборах).
  2. Добавочный резистор — это резистор, который подключается последовательно с измерительным механизмом и ограничивает ток через него. Он нужен для установки предела измерения прибора — чем больше предел измерения, тем больше сопротивление.

При Подключении к Источнику Постоянного Тока Принцип работы

Переходные процессы в RC и RL цепях
Значения напряжения на резисторе и общего тока RC-цепи уменьшаются также по экспоненциальному закону:
Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Постоянный ток, задачи Поэтому, принято считать, что процесс заряда конденсатора заканчивается, когда напряжение на нём достигает значений 90,95 или 99 величины напряжения источника питания U E. Спрашивайте, я на связи!

Почему вольтметр параллельно, а амперметр последовательно? | ЭТМ для профессионалов | Яндекс Дзен

  1. Чем больше сопротивление вольтметра, тем меньшее влияние он оказывает на работу цепи, соответственно, результат измерения будет точнее.
  2. Сопротивление вольтметра должно быть как можно больше чем сопротивление элемента цепи на котором измеряют напряжение — Rв >> Rн .

Сопротивление и измерения

С вольтметром разобрались, а каким должно быть сопротивление амперметра, чтобы он не влиял на работу цепи и показывал силу тока точно? Так как амперметр подключается в цепь последовательно, то его внутреннее сопротивление будет ограничивать ток в цепи.

Для примера посчитаем, какой ток протекает в цепи 1, если напряжение источника питания E 10В, а в качестве нагрузки используется резистор R1 сопротивлением 5 Ом.

Итак, ток в цепи должен быть 2 ампера, а теперь подключим в цепь условный амперметр, сопротивление Ra которого 1 Ом, тогда он покажет ток:

Отличие измеренного амперметром тока от расчётного почти в четверть связано с высоким сопротивлением амперметра. То есть чем меньше сопротивление амперметра – тем меньше он влияет на ток в цепи. Соответственно сопротивление амперметра должно быть намного меньше, чем сопротивление нагрузки (Ra

Как и вольтметр, стрелочный амперметр состоит из двух основных частей:

Так как шунт подключается параллельно измеряемой головке, то и внутреннее сопротивление амперметра из-за шунта будет снижаться. При этом чем больше предел измерения, тем меньше сопротивление шунта и меньше внутреннее сопротивление амперметра.

Амперметр нельзя подключать к цепи параллельно!

При Подключении к Источнику Постоянного Тока Принцип работы

Понравилась статья? Поделиться с друзьями:
✨Мир света
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: