Что такое люминесцентная лампа и как она работает?
Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.
Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.
Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:
- На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
- При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
- Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит активация и последующей свечение люминофора.
Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.
Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.

Люминесцентная лампа: устройство, принцип работы, виды, маркировка
- Достаточно высокая эффективность, в сравнении с теми же лампами накаливания выдают на порядок больший световой поток на каждый ватт потребленной электроэнергии;
- Имеет несколько вариантов цветового спектра, что делает обоснованным их применение для различных целей;
- Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же показатель у ламп накаливания и галогенок;
- Достаточно большое разнообразие конструкций – компактные, большие, удлиненные и т.д.
Разновидности
Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.
По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:
- Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
- Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.
По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.
По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с цоколем типа W и F, но они используются довольно редко.
По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.
Рис. 4. Цветовая температура
Способы подключения
Существуют различные варианты подключения люминесцентной лампы к сети. Самая популярная схема люминесцентного светильника — подсоединение с использованием электромагнитного балласта.
Схема с электромагнитным балластом (ЭмПРА)
- Высокие затраты на электроэнергию по сравнению с другими способами.
- Долгое время запуска – примерно 1-3 секунды. Чем выше износ лампочки, тем дольше она будет зажигаться.
- Не работает при низких температурах. Это приводит к невозможности использования в подвале или гараже, которые не отапливаются.
- Стробоскопический эффект. Мерцание негативно сказывается на человеческом зрении и психике, поэтому подобное освещение не рекомендуется использовать на производстве.
- Гудение при работе.
В схеме предусмотрен один дроссель для двух лампочек. Его индуктивности хватает на оба источника света. Напряжение стартера – 127 В, для светильника с одной лампой потребуется напряжение 220 В.
Есть схема люминесцентной лампы на 220 в с бездроссельным подключением. В ней отсутствует стартер. Такое бесстартерное подключение применяется при перегорании нити накала у лампочки. В конструкции также есть трансформатор и конденсатор для ограничения тока. Для ламп с перегоревшей нитью накала существуют переделки схемы и без трансформатора. Это облегчает конструкцию.
Два дросселя и две трубки
Этот метод применяется для двух ламп. Подключать элементы нужно последовательно:
- Фаза – на вход дросселя.
- От выхода дросселя один контакт подсоединить к первой лампе, второй – к первому стартеру.
- С первого стартера провода идут на вторую пару контактов первой лампы, свободный провод нужно подсоединять к нулю.
Подключение двух ламп от одного дросселя
Этот вариант используется нечасто, но реализовать его несложно. Двухламповое последовательное подсоединение отличается своей экономностью. Для реализации потребуется индукционный дроссель и пара стартеров.
Схема подключения ламп дневного света от одного дросселя:
- На штыревой выход ламп параллельным соединением подключается стартер.
- Свободные контакты подсоединяются к электрической сети через дроссель.
- Параллельно источникам света подключаются конденсаторы.
Бюджетные выключатели периодически могут залипать из-за повышения стартовых токов. В таком случае рекомендуется использовать высококачественные коммутационные устройства. Это обеспечит долгую и стабильную работу люминесцентной лампы.
Схема с электронным балластом
Все минусы ЭмПРА привели к тому, что пришлось искать другой способ подключения. В результате электромагнитный балласт был заменен на электронный, работающий не на сетевой частоте 59 Гц, а на высокой 20-60 кГц. Благодаря этому решению исключается моргание света. Такие схемы применяются на производствах.

Схемы подключения люминесцентных ламп |
- К каждой лампе подключается стартер параллельно на штыревой вход на торце колбы.
- Оставшиеся контакты следует подключить в электрическую сеть через дроссель.
- На контакты лампочек подключаются конденсаторы. Они необходимы для того, чтобы уменьшить интенсивность помех и реактивную мощность.
Замена люминесцентных ламп
Люминесцентный источник света отличается от классических галогеновых ламп и изделий с нитью накала длительным сроком службы. Но даже такие надежные лампочки могут выйти из строя, из-за чего их приходится заменять.
- Разобрать светильник. Важно аккуратно снимать все детали, чтобы прибор не повредился. Люминесцентные трубки нужно поворачивать вокруг оси в отмеченном направлении. Оно указывается на держателе стрелками.
- После поворота на 90 градусов трубку следует опустить. Тогда контакты легко выйдут из соответствующего отверстия.
- Визуально осмотреть целостность лампочки, нитей накала. Если зрительных проблем нет, поломка может быть вызвана внутренними компонентами.
- Следует взять новый источник света. Его контакты должны находиться в вертикальном положении и помещаться в отверстие. После установки лампочки ее нужно прокрутить в обратном положении.
Снимать прибор нужно аккуратно, чтобы не разбить стеклянную колбу. Внутри находится ртуть, которая опасна для здоровья.
После того как система собрана, можно подавать питающее напряжение, выполнять включение и приступать к тестированию. Финальным шагом будет установка защитного плафона на светильник.