Закон Полного Тока Для Однородной Магнитной Цепи Похожие документы

Закон Полного Тока Для Однородной Магнитной Цепи

При расчетах магнитных цепей, как и электрических, используют первый и второй законы (правила) Кирхгофа.

Первый закон Кирхгофа: алгебраическая сумма магнитных потоков в любом узле магнитной цепи равна нулю:

Первый закон Кирхгофа для магнитных цепей следует из принципа непрерывности магнитного потока, известного из курса физики (см. также § 21.8).

Второй закон Кирхгофа: алгебраическая сумма падений магнитного напряжения вдоль любого замкнутого контура равна алгебраической сумме МДС вдоль того же контура:

Второй закон Кирхгофа для магнитных цепей, по сути дела, есть иная форма записи закона полного тока.

Перед тем как записать уравнения по законам Кирхгофа, следует произвольно выбрать положительные направления потоков в ветвях и положительные направления обхода контуров.

Если направление магнитного потока на некотором участке совпадает с направлением обхода, то падение магнитного напряжения этого участка входит в сумму знаком плюс, если встречно ему, то со знаком минус.

Аналогично, если МДС совпадает с направлением обхода, она входит в со знаком плюс, в противном случае — со знаком минус.

В качестве примера составим уравнения по законам Кирхгофа для разветвленной магнитной цепи, изображенной на рис. 14.12.

Левую ветвь назовем первой, и все относящиеся к ней величины запишем с индексом 1 (поток напряженность поля длина пути в стали длина воздушного зазора ).

Среднюю ветвь назовем второй, и все относящиеся к ней величины будут соответственно с индексом 2 (поток напряженность поля длина пути в стали длина воздушного зазора ).

Все величины, относящиеся к правой ветви, имеют индекс 3 (поток длина пути на вертикальном участке суммарная длина пути на двух горизонтальных участках ).

Произвольно выберем направление потоков в ветвях. Положим, что все потоки направлены вверх (к узлу а). Число уравнений, которые следует составить по законам Кирхгофа, должно быть равно числу ветвей цепи (в рассматриваемом случае нужно составить три уравнения).

По первому закону Кирхгофа необходимо составить столько Уравнений, сколько в цепи узлов без единицы (см. § 2.8).

В цепи (рис. 14.12) два узла; следовательно, по первому закону Кирхгофа составим одно уравнение:

По второму закону Кирхгофа следует составить число уравнений, равное числу ветвей, за вычетом числа уравнений, составленных по первому закону Кирхгофа.

В рассматриваемом примере по второму закону Кирхгофа составим уравнения.

Первое из этих уравнений составим для контура, образованного первой и второй ветвями, второе — для контура, образованного первой и третьей ветвями (для периферийного контура).

Перед составлением уравнений по второму закону Кирхгофа необходимо выбрать положительное направление обхода контуров. Будем обходить контуры по часовой стрелке.

Уравнение для контура, образованного первой и второй ветвями, имеет вид

Закон Полного Тока Для Однородной Магнитной Цепи Похожие документы

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Магнитные системы и магнитные цепи постоянного тока — Основы теории электрических аппаратов 2 позволяет решать задачи данного типа с использованием всех графических методов и приемов, применяемых при анализе аналогичных нелинейных электрических цепей постоянного тока. Спрашивайте, я на связи!

14.14. Законы Кирхгофа для магнитных цепей.

Тема магнитные цепи и их расчет

Часть электротехнического устройства, отдельные участки ко­торого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток, называется магнитной цепью . При­мером простой магнитной цепи может служить сердечник коль­цевой катушки (см. рис. 3.3, а). Магнитные цепи трансформато­ров, электрических машин и других аппаратов и приборов имеют более сложную форму.

Закон Полного Тока Для Однородной Магнитной Цепи Похожие документы

Магнитная цепь, которая выполнена из одного материала и по всей длине имеет одинаковое сечение, называется однородной (см.рис. 3.3, а).

Неоднородная магнитная цепь состоит из нескольких одно­родных участков, отличающихся длиной, сечением и материалом. Наиболее часто встречаются магнитные цепи, в которых кроме ферромагнитных участков имеются воздушные зазоры. Неоднородная цепь, изображенная на рис. 3.9, а имеет 3 участка, одним из которых является воздушный зазор.

Магнитные цепи, как и электрические, бывают неразветвленными (рис. 3.9, а) и разветвленными (рис 3.9, б).

Характерной особенностью неразветвленной магнитной цепи является неизменный магнитный поток Ф во всех участках цепи ( рис. 3.9, а).

Для разветвленной цепи характерно то, что алгебраическая сумма магнитных потоков в точке разветвления равна нулю, т. е. — первый закон Кирхгофа для магнитной цепи. Для разветвленной цепи (рис. 3.9, б) можно записать Ф-Ф 1 — Ф 2 =0 или Ф=Ф 1 +Ф 2

Разветвленные магнитные цепи бывают симметричными и не­симметричными. На рис. 3.9, б изображена симметричная цепь, так как левая и правая ее части имеют одинаковые размеры и выполнены из одного материала.

Магнитный поток в сердечнике кольцевой катушки (рис. 3.3, а) определяется выражением:

где IW — намагничивающая сила или магнитное напряжение U m ; l и S — параметры сердечника; = RM — магнитное сопротивление сердечника. Тогда

Выражение (3.20) — математическая запись закона Ома для магнитной цепи.

Для неоднородной, неразветвленной магнитной цепи, изоб­раженной на рис. 3.9, а магнитный поток, созданный в магнитной цепи двумя обмотками по закону Ома, определяется:

где IW — намагничивающая сила (ампер-витки) или магнитное напряжение U m .

Закон Ома решает качественную задачу расчета магнитной цепи, т. е. задачу зависимости одних величин от других.

Для расчета магнитных цепей можно воспользоваться зако­ном полного тока. При этом решается одна из двух задач.

Прямая задача, в которой по заданному магнитному потоку Ф в магнитной цепи определяют намагничивающую силу IW .

Обратная задача, в которой по заданной намагничивающей силе IW определяют магнитный поток Ф.

Для однородной магнитной цепи прямая задача реша­ется в следующей последовательности:

а) по заданному магнитному потоку и габаритам цепи определяют магнитную индукцию;

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Применение закона полного тока для расчета магнитных цепей — МегаЛекции Основной величиной, характеризующей интенсивность и направление магнитного поля является вектор магнитной индукции , которая измеряется в Теслах Тл. Спрашивайте, я на связи!

Общая характеристика задач и методов расчета магнитных цепей (Лекция №33)

Применение закона полного тока для расчета магнитных цепей

Направление магнитных линий и направление создающего их тока связаны между собой известным правилом правоходового винта (буравчика) (рис. 4.1).

Закон Полного Тока Для Однородной Магнитной Цепи Похожие документы

Рис. 4.1. Магнитное поле прямолинейного проводника и катушки. Правило Буравчика

Основной величиной, характеризующей интенсивность и направление магнитного поля является – вектор магнитной индукции , которая измеряется в Теслах [Тл].

Вектор направлен по касательной к магнитной линии, направление вектора совпадает с осью магнитной стрелки, помещенной в рассматриваемую точку магнитного поля.

Величина определяется по механической силе, действующей на элемент проводника с током, помещенный в магнитное поле.

Если во всех точках поля имеет одинаковую величину и направление, то такое поле называется равномерным.

зависит не только от величины I, но и от магнитных свойств окружающей среды.

Второй важной величиной, характеризующей магнитное поле является – магнитный поток , который измеряется в Веберах [Вб].

Элементарным магнитным потоком Ф сквозь бесконечно малую площадку называется величина (рис. 4.2)

где α – угол между направлением и нормалью к площадке dS.

Рис. 4.2. Определение магнитного потока, пронизывающего: а) произвольную поверхность; б) плоскую поверхность в равномерном магнитном поле

Если магнитное поле равномерное, а поверхность S представляет собой плоскость

При исследовании магнитных полей и расчете магнитных устройств пользуются расчетной величиной – напряженность магнитного поля [А/м]

Для неферромагнитных материалов и сред (дерево, бумага, медь, алюминий, воздух) μа не отличается от магнитной проницаемости вакуума и равна

Всякий электромагнит состоит из стального сердечника – магнитопровода и намотанной на него катушки с витками изолированной проволоки, по которой проходит электрический ток.

Совокупность нескольких участков: ферромагнитных (сталь) и неферромагнитных (воздух), по которым замыкаются линии магнитного потока, составляют магнитную цепь.

В основе расчета магнитных цепей лежит закон полного тока (рис. 4.3)

где: Н – напряженность магнитного поля в данной точке пространства;
dL – элемент длины замкнутого контура L;
α – угол между направлениями векторов и ;
S I – алгебраическая сумма токов, пронизывающих контур L.

Ток Iк, пронизывающий контур L считается положительным, если принятое направление обхода контура и направление этого тока связаны правилом правоходового винта (буравчика).

Применение закона полного тока для расчета магнитных цепей

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Основные понятия и законы магнитных цепей По кривой намагничивания для каждого значения находятся напряженности на ферромагнитных участках; напряженность поля в воздушном зазоре определяется согласно. Спрашивайте, я на связи!

Тема магнитные цепи и их расчет — Документ

Понравилась статья? Поделиться с друзьями:
✨Мир света
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: