Напряжение на Конденсаторе в Цепи Постоянного Тока Удельная ёмкость

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 700$А за 700$с.

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Часто его записывают в виде $k=/$, где $ε_0=8.85×10^Кл^2$/$H·м^2$ — электрическая постоянная.

Напряжение на Конденсаторе в Цепи Постоянного Тока Удельная ёмкость

Конденсатор в электрической ? цепи - Физика
На каждой из пластин сохраняется соответствующий по знаку заряд. В итоге между ними появляется притяжение, благодаря которому конденсатор сохраняет электроэнергию.
Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Измерение Силы Тока в Цепи с Конденсатором – Виды включений | ✨Мир света Электрическое сопротивление определяется как коэффициент пропорциональности R между напряжением U и силой постоянного тока I в законе Ома для участка цепи. Спрашивайте, я на связи!

16-2. Зарядка и разряд конденсатора

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на 700$ кулон меняет его потенциал на 700$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Напряжение на Конденсаторе в Цепи Постоянного Тока Удельная ёмкость

Конденсатор в цепи переменного тока

Если в самую простую цепь постоянного тока подсоединить конденсатор, он будет выполнять функцию разрыва.

В любой электроцепи есть такие основные элементы, как источники питания, резисторы, конденсаторы, катушки индуктивности, переключатели и провода.

Заряд источника питания имеет тот же знак, что и заряд конденсатора. При выключении переключателя цепь разрывается и в ней теперь есть два источника питания – конденсатор и первоначальный источник. Для работы конденсатора как источника питания необходимо начать его разрядку переключением в соответствующий режим.

При работе конденсатора в цепи источник питания постоянного тока может выдавать переменный ток. При зарядке конденсатора величина тока изменяется от нуля до максимума. Конденсатор даже с небольшим зарядом выдает в цепь переменный ток, меняющийся от нуля до максимума. А после полной его разрядки в цепи получается разрыв, и ток не течет.

Такие явления в электрических цепях именуются переходными. Они наблюдаются в цепях постоянного напряжения с участием реактивных сопротивлений.

Данные процессы характеризуются постоянной времени переходного процесса τ, которая рассчитывается так:

Напряжение на Конденсаторе в Цепи Постоянного Тока Удельная ёмкость

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Позойский С. В, Жидкевич В. И. Избранные задачи по теме «Конденсаторные цепи» Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В. Спрашивайте, я на связи!

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца | ЕГЭ по физике | Теория к заданию 14

Позойский С.В., Жидкевич В.И. Избранные задачи по теме «Конденсаторные цепи»

Позойский С.В., Жидкевич В.И. Избранные задачи по теме «Конденсаторные цепи» // Фiзiка: праблемы выкладання. – 2006. – № 4. – С. 42-49.

В статье разобраны примеры задач повышенного и углубленного уровня на расчет электрических цепей постоянного тока с конденсаторами. Приводится краткий теоретический материал по данной теме.

Расчет электрических цепей, в которых конденсаторы соединены последовательно или параллельно, производится по известным формулам.

Если в цепи нет участков с последовательно или параллельно соединенными конденсаторами, но есть точки с одинаковыми потенциалами, то их можно либо соединять, либо разъединять, не меняя режима работы цепи. Цепь при этом упрощается, и мы приходим к случаю параллельно и последовательно соединенных конденсаторов.

Если в цепи нет параллельно и последовательно соединенных конденсаторов и нет точек с одинаковыми потенциалами, то для ее расчета используются следующие положения.

1. Сумма зарядов всех обкладок, соединенных с одним из полюсов источника тока, равна заряду источника (закон сохранения заряда):

2. Если пластины нескольких конденсаторов соединены в один узел, не связанный непосредственно с источником тока, то алгебраическая сумма зарядов на этих пластинах равна нулю (закон сохранения заряда):

Это соотношение справедливо и тогда, когда перед конденсаторами имеются источники ЭДС (рис. 3): .

3. Алгебраическая сумма разностей потенциалов на всех конденсаторах и источниках тока, встречающихся при обходе любого замкнутого контура, равна нулю (закон сохранения энергии):

4. Если на каком-либо из участков цепи 12 (рис. 4) имеется конденсатор и источник ЭДС, т.е. участок цепи неоднородный, то заряд конденсатора определяется ЭДС источника и разностью потенциалов на концах участка :

Этот факт обусловливает необходимость учитывать выбор знаков в каждом конкретном случае:

а) Если , т.е. разность потенциалов направлена в ту же сторону, что и ЭДС (см. рис. 4), то следует пользоваться формулой (4).

В этом случае разность потенциалов «противодействует» ЭДС. Если же при этом , то для определения заряда формулу (4) следует записать в таком виде:

Правило для определения знаков зарядов на обкладках конденсатора: поле между обкладками конденсатора направлено в ту сторону, в которую направлена сумма ЭДС и разности потенциалов .

В приведенном примере (см. рис. 4) при и поле конденсатора направлено влево (левая обкладка заряжена отрицательно, правая – положительно);

Если , то поле между обкладками конденсатора направлено в сторону меньшего потенциала, т.е. со стороны меньшего потенциала будет обкладка с отрицательным зарядом.

в) В случае, когда величина потенциалов j 1 и j 2 неизвестна, следует пользоваться одним из рассмотренных вариантов по своему усмотрению.

Напряжение на Конденсаторе в Цепи Постоянного Тока Удельная ёмкость

Электроэнергетика и электротехника
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы "Специалисту по модернизации систем энергогенерации"
Почему постоянный ток не проходит через конденсатор? Если построить график мощности в цепи переменного тока с конденсатором, можно убедиться что конденсатор так же, как и чистая индуктивность, не потребляет активной мощности. Спрашивайте, я на связи!

Конденсаторы в цепи постоянного тока: история, определение, функции и обозначение

Понравилась статья? Поделиться с друзьями:
✨Мир света
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: